Electrochemical biosensor for detection of BCR/ABL fusion gene using locked nucleic acids on 4-aminobenzenesulfonic acid-modified glassy carbon electrode.

نویسندگان

  • Jinghua Chen
  • Jing Zhang
  • Kun Wang
  • Xinhua Lin
  • Liying Huang
  • Guonan Chen
چکیده

In this study, an electrochemical DNA biosensor was developed for detection of the breakpoint cluster region gene and the cellular abl (BCR/ABL) fusion gene in chronic myelogenous leukemia by using 18-mer locked, nucleic acid-modified, single-stranded DNA as the capture probe. The capture probe was covalently attached on the sulfonic-terminated aminobenzenesulfonic acid monolayer-modified glassy carbon electrode through the free amines of DNA bases based on the acyl chloride cross-linking reaction. The covalently immobilized capture probe could selectively hybridize with its target DNA to form double-stranded DNA (dsDNA) on the LNA/4-ABSA/GCE surface. Differential pulse voltammetry was used to monitor the hybridization reaction on the capture probe electrode. The decrease of the peak current of methylene blue, an electroactive indicator, was observed upon hybridization of the probe with the target DNA. The results indicated that, in pH 7.0 Tris-HCl buffer solution, the peak current was linear with the concentration of complementary strand in the range of 1.0 x 10 (-12)1.1 x 10 (-11) M with a detection limit of 9.4 x 10 (-13) M. This new method demonstrates its excellent specificity for single-base mismatch and complementary dsDNA after hybridization, and this probe has been used for assay of PCR real sample with satisfactory results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Au nanoparticles/g-C3N4 modified biosensor for electrochemical detection of gastric cancer miRNA based on hairpin locked nucleic acids probe

Objective: The annual incidence of cancer in the world is growing rapidly. The most important factor in the cure of cancers is their early diagnosis. miRNA, as a biomarker for early detection of cancer, has attracted a lot of attention. Methods: In this study, an electrochemical biosensor was developed to detect the amount of miR-106a, the biomarker of gastric cancer, by modifying a glass...

متن کامل

Voltammetric Detection of Dopamine and Ascorbic Acid Using a Multi-Walled Carbon Nanotubes/Schiff Base Complex of Cobalt-Modified Glassy Carbon Electrode

The surface of the glassy carbon electrode (GCE) is modified with the composite of new Cobalt complex with a tetradentate Schiff base ligand derived from 3-ethoxysalicylaldehyde and 4,5-dimethyl orthophenylenediamine (CoOEtSal) and multi-walled carbon nanotube (MWCNT). The electrochemical oxidation of ascorbic acid (AA) and dopamine (DA) at the modified electrode was studied using the cyclic an...

متن کامل

Simultaneous determination of dopamine and uric acid using a glassy carbon paste electrode modified with copper- para red complex

A simple approach based on cyclic voltammetry (CV) was developed for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) using a modified glassy carbon paste electrode (GCPE). In the present study, analytical parameters were optimized and electrochemical performance of modified electrode was investigated. The calibration curves were obtained ...

متن کامل

Designing a Label Free Aptasensor for Detection of Methamphetamine

A label-free electrochemical nucleic acid aptasensor for the detection of methamphetamine (MA) by the immobilization of thiolated self-assembled DNA sequences on a gold nanoparticles-chitosan modified electrode is constructed. When MA was complexed specifically to the aptamer, the configuration of the nucleic acid aptamer switched to a locked structure and the interface of the biosensor changed...

متن کامل

Electrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode

The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 80 21  شماره 

صفحات  -

تاریخ انتشار 2008